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SUMMARY 
Background: Age-related changes in the vascular network have been widely documented, 

however, nonlinear identification has been poorly applied to the analysis of cardiovascular 

signals.  

Objective: To determine the impact of age on spectral components of Noise-free realizations 

(NFR) obtained from photoplethysmographic signals, summarized in the Kernel Complexity 

Regressive Index (KCRIndex).  

Methods: With  190 apparently healthy participants (9 to 89 years) from Orense, Spain, 

Photoplethysmographic signals were recorded during 5 minutes in supine position using 

Nellcor-395 pulse oximeter; signals were digitized at 1000 Hz, and furtherly submitted to 

nonlinear identification via a kernel nonlinear autoregressive estimator. KCRIndex is defined as 

the average of at least three negative slope values at the NFR log-log spectrum in the 9 to 25 Hz 

frequency region. 

Results: KCRIndex decreased with age in a linear fashion and did not differ between genders. 

The regression line obtained was KCRIndex=-0.025*age+6.868 (r=-0.751).  

Conclusions:  KCRIndex, is strongly correlated with age, thus opening up new possibilities for 

cardiovascular exploration at primary health care settings and even on open field conditions. 
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RESUMEN 

Antecedentes: los cambios relacionados con la edad en la red vascular se han documentado 

ampliamente, sin embargo, la identificación no lineal solo se ha aplicado de manera esporádica 

al análisis de las señales cardiovasculares.  

Objetivo: determinar los cambios con la edad en los componentes espectrales de las 

realizaciones sin ruido (NFR) obtenidas a partir de señales fotopletismográficas, resumidas en el 

índice regresivo de la complejidad por núcleos (KCRIndex).  

Métodos: Con 190 participantes aparentemente sanos (de 9 a 89 años) residentes en  Orense, 

España, se registraron señales fotopletismográficas durante 5 minutos en posición supina 

usando un oxímetro de pulso Nellcor-395; las señales se digitalizaron a 1000 Hz, y se 

sometieron a identificación no lineal a través de un estimador autorregresivo no lineal por 

núcleos. El KCRIndex se define como el promedio de al menos tres valores de pendiente 

negativos en el espectro log-log de NFR en la región de frecuencia de 9 a 25 Hz.  

Resultados: KCRIndex disminuyó con la edad de forma lineal y no difirió entre géneros. La línea 

de regresión obtenida fue KCRIndex = -0.025 * edad + 6.868 (r = -0.751). Conclusiones: Este 

índice propuesto está fuertemente correlacionado con la edad, lo que abre nuevas 

posibilidades para la exploración cardiovascular en entornos de atención primaria de salud e 

incluso en condiciones de campo. 

Palabras clave: edad cardiovascular;  señal fotopletismográfica; dinámica no lineal;  regresión 

no lineal no paramétrica; KCRIndex 
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INTRODUCTION 

The arterial network apparently follows certain optimality principles (minimum pumping effort, 

minimal area, (1-2)). This optimality does not necessarily emerge as result of a sophisticated 

genetic program (3); instead, it may follow simple mechanical rules operating locally that at the 

end pave the wave for global auto-organization, as is the case in many natural complex 

systems. The structure of arterial networks has been studied from different viewpoints (1-4). On 

the other hand, certain cardiovascular signals (e.g. both invasive and noninvasive pulse 

pressure) have been examined in relation to the anatomical aspects of different vessels. In 

particular, the presence of reflected waves in pulse pressure signals is apparently related to 

wave reflections at bifurcation points of the aorta (5-7). Much attention has been paid to the first 

reflected wave, apparently coming from the main of the abdominal aorta. The reflected wave 

appears as superimposed with the incident wave and methods have been developed for 

extracting the reflected wave from the overall PPG wave complex (8). Well known indices as the 

augmentation index are obtained through this kind of procedure (9). Changes of these indices 

with age are presumably related to major changes in the aorta’s anatomical, mechanical and 

viscous-elastic properties. Reflected waves are expected not only from major bifurcations. For 

very simple models of vessel branching, a reflected wave will appear at any bifurcation for 

which the total cross-sectional area of daughter branches is smaller than that of mother 

branches. (11) 

In theory, an optimal arterial network does not generate reflected waves. According to this 
criterion, however, real structures, such as the coronary artery studied by Changizi and 
Cherniak (3) apparently contain about 13% of non-optimal bifurcations. In this sense, the 
presence of reflected waves in the PPG signal might be viewed as an evidence of non-optimality 
of the arterial network. Different authors have estimated cardiovascular compliance, an index 
that considers the presence of several reflected waves in the descending phase of a pulse wave 
signal. Arterial compliance assessed from invasive and noninvasive continuous pressure signals, 
has been described as one of the best predictors of cardiovascular age (r=0.66, n=212). (12) 
We consider that here are two poorly explored avenues in this line of research: One of them is 
nonlinear time series analysis (13-14). In this approach, the morphology of a waveform is 
conceived as the result of an underlying dynamical system plus the influence of stochastic drive 
that is not necessarily measuring error or noise due to person’s movements but a real 
stochastic input into the system that can considerably change the properties of the generated 
signal (15-16). In this approach nonlinear identification consists of finding the autoregressive 
function that can better reproduce the underlying dynamics. From the obtained function a 
noise-free realization can be obtained via recursive evaluation of the obtained autoregressive 
function. In the case of nonlinear functions, periodic or chaotic Noise-Free Realizations (NFR) 
may appear. A criterion for quality of fit is, besides optimal one-step-ahead prediction, that the 
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obtained NFR retains the typical pattern of the original trace [17]. Indeed, Shi et al (2000) have 
shown that pulse wave signals can be nicely estimated (and mimetized) using a Kernel 
nonparametric approach (18), See Figures 4 and 5 therein. 

On the other hand, the photoplethysmographic (PPG) signal records pulsatile volume changes 
in the vessels irrigating a certain area, usually a finger or a toe. In theory at least [11], this signal 
is closely related to arterial pressure. Unlike other signals, the recording of the PPG signal is 
very simple and the commercially available devices from certified dealers can be on the order 
of 200 USD, compared to $3789.00 for an applanation tonometer or $40000.00 for a Finapress 
system. This makes PPG the metric of choice in field conditions or primary care situations. 
Nonlinear estimation of PPG signals allows not only satisfactory one step ahead prediction, but 
also excellent mimetic capability, both in recovering the original pattern and in producing linear 
log-log spectra (Fig. 1). This mimetic capability enabled us to introduce a new index derived 
from estimating the slope of log-log spectra of PPG signal’s NFR. Our aim was to determine 
possible changes with age in the spectral composition of corresponding NFR. 
A priori, we hypothesize that the spectral components beyond 7 Hz range correspond to the 
presence of reflected waves coming from deep parts of the vascular tree. Even when it is hard 
to demonstrate this assumption theoretically, simulation results obtained by Allastruey et al (19-

20), indicate that reflected waves coming from farther branching sites do contribute to higher 
frequencies. 
 
 

Methods 
Subjects 

 Volunteers were recruited in the city of Orense, Spain. They were free of clinical cardiovascular 
disease and medication, and Body Mass Index never surpassed 31 kg/m-2. Approval was 
obtained from the local research ethics committee, and written informed consent was obtained 
from all participants.  Five-min-duration photoplethysmographic signals were obtained from 
the pointer finger of the right arm with the subject in supine position, using a validated 
oximeter (Nellcor 395, USA). Signals were digitized at 1000 Hz and saved as ASCII files. For 
signal processing purposes data were down-sampled to 100 Hz. Continuous pulse pressure 
signals digitized at 125 Hz were downloaded from the “Fantasia” data base available at 
www.physionet.org.  

Data analysis 
Signal processing: Kernel nonlinear autorregression. Formally, a segment of the PPG (or pulse 
wave) signal is considered as dynamically emerging from a system of the type:  

ttt eXfx   )( 1    (1) 
t

mtttt xxxX )......,( 211    is state vector; RRf m :  is a smooth map called as the skeleton of 

the underlying dynamical system [10]; },...,2,1,{ Ntet  is a sequence of dynamical noise,  such 

that et is independent of xt-s  for s>0; and m is a positive integer called lag. 

http://www.physionet.org/
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In the most general case, when very few assumptions are made about the function f 

(smoothness,  stationarity) it is convenient to estimate the nonlinear autoregressive function f 

via  Naradaya-Watson nonparametric kernel estimation (11-13).  In kernel nonparametric 

estimation, the estimate f in (1) at a point (Zt-1, Zt-2, …,Zt-n) of the state space, is obtained as a 

weighted average of all the data (x1, x2, …, xN). Specifically: 
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K is the kernel function and the parameter h is the bandwidth parameter to be 

selected for optimal approximation. In our implementation, h is selected via cross validation 

error minimization. 

In this study the following exponential kernel was selected.  

u
euK


 )2/1()(  

To find the bandwidth parameter h, a cross validation one-step-ahead criterion was applied. 
The obtained skeleton was regarded as valid if it also met two mimetic criteria; it means that 
the NFR must be able: 

 To capture the pattern of the original signal,  

 To present a linear section in the corresponding log-log spectrum similar to that of the 
original PPG signal.. 

 
Figure No. 1 summarizes the example of a satisfactory NFR 
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Fig.1- Original PPG signal, (top left), the estimated NFR (top right), and corresponding power spectra. 

 

The acquisition of a proper NFR from a time series is not granted by any of the estimation 
methods available today, it depends on the nature of the signal, its length, and other factors. In 
this study, a 300 data point segment was selected randomly from each individual signal. 
Nonlinear identification was applied to each individual segment. The process was repeated until 
at least three valid NFR were obtained from an individual recording.  
KCRIndex. The index is estimated as the average of the absolute value of the negative slope 
from all valid NFR obtained during the estimation. At least 3 valid NFR must be obtained from 
each individual recording. 
Statistical analysis. The following methods were used: regression and correlation analysis, 
Kolmogorov-Smirnov test for normality, Mann-Whitney U-test for comparing two groups, t-test 
for means. 
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Results 
Continuous Pulse Pressure among Young and Elderly Clinically Healthy Subjects 

The estimation of KCRIndex to these subjects summarized in  Figure 2. Clearly, KCRIndex is 
reduced with age among healthy individuals (p=0.0037).  
A nonparametric comparison between the two groups yielded a very significant difference 
(2*1sided exact p=0.000011, Mann-Whithney’s U-test). 
 

 
 

Fig. 2- KCRIndex values obtained for pulse pressure  traces from the “Fantasia” database plotted against 
each subject’s age. Note the clear discrimination between young and elderly healthy subjects. 

 

Orense data 
Recordings were performed on 190 subjects. All recordings were proven valid, and KCRIndex 
was obtained from each individual recording.  The mean age was 45±18 years and ranged from 
9 to 87 years, grouped by decades. Ages are distributed as per Table I.  
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Table I- Demographic data for subjects from the Orense Database. 

 
   

 
   Age 

group 
Mean 

age 
STD  
age 

Sex 
Male/Female 

Weight 
Mean 

Weight 
STD n 

 9-15 10.71 1.25 4/3 41.2 12.2 7 
 16-25 21.19 3.12 17/3 71.7 18.7 21 
 26-35 31.10 2.66 19/21 70.0 11.4 40 
 36-45 40.36 2.84 19/17 71.0 12.8 36 
 46-55 49.58 2.59 16/15 72.4 12.5 31 
 56-65 60.55 3.26 11/11 71.8 9.7 22 
 66-75 69.75 3.21 8/12 68.3 9.8 20 
 76-85 79 1.76 5/5 66.7 10 10 
 >85 88 1.41 1/1 64 5.7 2 
  

   
 

    
KCRIndex estimated from PPG recordings changed steadily with age in a linear manner (Fig. 3). 
 

 
 

Fig. 3- KCRIndex values as a function of age. Orense data basis. 

 
On the other hand, the obtained correlation coefficient is high (r=0.751; p<0.00005). Attempts 
to fit these data to other type of function did not increase the quality of fit, thus this 
dependence is strongly linear for the considered age group. There were no practically 
differences between genders (y=-0.026x+6.942; R2=0.558 for male y=-0.024x+6.819; R2=0.571 
for female).  

 
 

y = -0,0255x + 6,8687 
R² = 0,564 

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

0,00 20,00 40,00 60,00 80,00 100,00



Revista Cubana de Informática Médica 2019:11(2)3-15 

 

 

11 
http://scielo.sld.cu 
 

 

Age group comparisons 
We attempted to detect whether adjacent age groups proved significantly different in KCRIndex 
values.  
As figure 3 shows, a ten-year age difference means a reduction in KCRIndex of 0.25 units.  
Table II basically supports this result. 
 

Table II- KCRIndex values distributed by age group. 
group 

Mean 
age 

SD 
 age 

 
Mean 

KCRIndex 
SD 

KCRIndex 
9-15 10.71 1.25 6.77 0.41 
16-25 21.19 3.12 6.19 0.50 
26-35 31.10 2.66 6.12 0.45 
36-45 40.36 2.84 5.83 0.44 
46-55 49.58 2.59 5.64 0.33 
56-65 60.55 3.26 5.23 0.45 
66-75 69.75 3.21 5.17 0.41 
76-85 79.00 1.76 4.82 0.21 

>85 88.00 1.41 4.72 0.01 
 

     
KCRIndex passed the Kolmogorov-Smirnov test for normality (P>0.25), and we compared all 
adjacent groups for significant differences as per the mean KCRIndex values. Results appear in 
Table 3. 
 

Table 3- “p-values” resulting from comparing neighboring age groups 
10to20 0.00520 

 20to30 0.29000 
 30to40 0.03000 
 40to50 0.02640 
 50to60 0.00020 
 60to70 0.32000 
 70a80 0.00520 
 

   Legend: “10to20” means comparison between groups: aged 9-15 years with group aged 16-25 years. 

 
Thus, it is not uncommon to see that age groups differing by a decade are different. With this 
dataset, it was not possible to find differences between any adjacent age group differing only 
by 5 year increments.  
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Discussion 
The main findings of the current study are that spectral composition of noise-free-realizations 
obtained from both continuous pulse pressure and PPG recordings change with age in an 
apparently linear way. The main distinctive aspect of our approach has been to focus on the 
extraction of those features of the underlying dynamics that are less influenced by stochastic 
contributions. Beat to beat, PPG waveforms exhibit a variability in their shape and averaging is 
not the best way of getting rid of “noise” if data arise from a nonlinear system. 
On the other hand, modeling the generation and propagation of pulse waves in the arterial 
network is a formidable task. Bottom up models with no less than 50 arteries can provide 
valuable insight about what can be expected. At the same time, as we know, the slightest 
perturbation in the network, be it a thrombus, an atheroma plaque or a tear in the intimae, can 
lead to huge changes in the solutions.  
A top-down approach allows the data to drive the search for a likely solution. The fact that the 
obtained noise free realizations are capable of mimetizing the original waveforms can suggest 
that with this approach a substantial portion of the underlying dynamics is captured. Moreover, 
the fact that the slope of the corresponding log-spectra changes with age can suggest that this 
parameter reflects substantial processes taking place within the organism.  
Besides these merely theoretical questions, our results also have practical implications. 
In the literature there is much discussion regarding when changes in the arterial network begin. 
Results from table 3 suggest the following answer: changes start at around 15-20 years. A larger 
data sample perhaps can bring a more precise answer. This is in agreement with the idea that 
atherosclerotic changes start in childhood, but somewhat contradict the results of Giuliani et al. 
using HRV data who saw no differences between 25 and 35 years (21). 
Cardiovascular researchers seem to expect much from the creation of a cardiovascular age 
estimator. This is not surprising: age, as suggested, is the major 'shareholder' in cardiovascular 
disease (22). Pathological conditions are thus likely expected to appear in individuals whose 
cardiovascular age is higher that chronological age. Among early attempts of creating a CV age 
estimator we find Giuliani et al (21), who obtained a correlation of 0.71 in a sample of 112 
subjects. On the other hand, in a sample of 212 subjects McVeigh et al found that the 
compliance index strongly correlates with age (r=0.66). Correlation coefficient comparison 
reveals that our data present a stronger correlation than those of McVeigh (p=0.0353, one 
sided test). Other authors have based their CV age estimators on morphological properties of 
the arteries(23), as aortic arch distensibility or pulse wave velocity at the aorta assessed via MRI 
(24), or a so called “calcium index” (25). 
At this time it seems pretentious to predict cardiovascular age on the basis of the regression 
equation when predicted age can differ by up to 20 years in normal individuals. 
On the other hand, it seems appropriate to use z-scores as a way to assess an individual’s 
condition. Taking our data as the normative database sub-sectioned into decades, it is possible 
to estimate the corresponding Z score for a person in a given age range (e.g. from 26y to 35 y). 
If this value goes below -1.96, the person falls below the 97 percentile for her/his age and can 
be considered to have an aged arterial network. As an illustration, we estimated KCRIndex in a 
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sample of 25 obese subjects aged 6-75y.  For comparison, 25 age-matched healthy individuals 
from our database were selected. We found that there is a higher proportion of individuals with 
z-scores below -1.96 among obese persons than among their healthy counterparts. (0.32 vs. 
0.04; p=0.0066, proportion comparison test).These results may be interpreted as supporting 
the idea that obesity is a risk factor for accelerated vascular ageing. 
Another approach to cardiovascular age estimation is via multivariate analysis where, besides 
KCRIndex, other indices reported in literature could be included. Possible candidates could be 
the PC1 obtained by Piccirillo from RQA analysis of heart rate variability. PC1 showed a strong 
correlation with age (r=0.73, n=112). 
Other components could be the compliance index as described by McVeigh et al (12) as 
mentioned. This index is highly correlated with age (r=0.66, n=212). Finally, PTT, or transit time 
of the PPG signal can also be used but in this case, simultaneous recording of an ECG signal and 
a PPG signal (or two PPG signals) is required. Since PC1, PPT and KCRIndex apparently refer to 3 
different physiological processes (autonomic regulation, arterial stiffness and network 
configuration); these seem to be good candidates for a multivariate cardiac age estimator. 
Currently, our group is working on the implementation of these measurements.  
Summarizing, an index obtained from the PPG signal using a nonlinear identification approach 
has shown to be well correlated with age.  
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