Mar 9th, 2007 Archives

47

Durante años la actividad de la Inteligencia Artificial estuvo dedicada a las investigaciones teóricas y al desarrollo de experimentos a través de programas que demostraran “actitudes inteligentes”, con estos programas se pretend’ia que la máquina jugara ajedrez, demostrara teoremas matemáticos, etc.

No fue hasta los años 70 que surgió un nuevo paradigma en la Inteligencia Artificial “los Sistemas Expertos”, cuya función es desarrollar trabajos similares a los que desarrollar’ia un especialista en un área determinada, la idea no es sustituir a los expertos, sino que estos sistemas sirvan de apoyo a los especialistas en un “dominio” de aplicación específico.

Estos sistemas expertos son en lo esencial sistemas de computación basados en conocimientos cuyos componentes representan un enfoque cualitativo de la programación. Muchas personas pueden creer que un Sistema Experto (SE) es un sistema compuesto por subsistemas y a su vez estos por otros subsistemas hasta llegar a los programas, y que los SE se miden por la cantidad de programas que contienen. Sin embargo la cantidad no es lo que prima en los SE, si no la cualidad del mismo, esta cualidad está dada por la separación de las reglas que describen el problema (Base de Conocimientos), del programa de control que es quien selecciona las reglas adecuadas (Motor de inferencias).

Podemos decir que un Sistema Experto es una Base de Conocimientos (BC), una Base de Hechos (BH) y un Motor (o Máquina) de Inferencias (MI). Por otra parte estos sistemas no se miden por la cantidad de instrucciones o programas sino por la cantidad de reglas que hay contenida en su Base de Conocimientos.

Para desarrollar los sistemas expertos primero es necesario abordar un área de interés, dentro de esta área se seleccionan a los expertos, que son los especialistas capaces de resolver los problemas en dicha área. Por ejemplo el área de interés de las empresas de proyectos, son precisamente los proyectos y un especialista podría ser un arquitecto, un ingeniero civil, etc. Ahora bien, casi siempre estos especialistas, son expertos en un dominio específico y es sobre este dominio, donde poseen su mayor experiencia (Dominio de Experticidad), por ejemplo un Ing. civil especializado en cimientos.

Una vez seleccionado al experto o a los expertos y estos estén de acuerdo en dar sus conocimientos, comienza a jugar su papel el “Ingeniero de Conocimientos”, que es el encargado de extraerle los conocimientos al experto y darle una representación adecuada, ya sea en forma de reglas u otro tipo de representación, conformando as’i la base de conocimientos del sistema experto.

Formas de representación de los conocimientos:
Reglas de producción
Redes semánticas
Marcos (Frames).

La forma de representación más usada es por reglas de producción, también llamadas reglas de inferencias. Casi todos los sistemas expertos están basados en este tipo de representación, ahora nos ocuparemos de los sistemas basados en reglas.

Las reglas de producción son del tipo:
SI Premisa ENTONCES Conclusion (SI A ENTONCES B).

Donde tanto las premisas como la conclusión, no son más que una cadena de hechos conectados por “Y” o por “O”, de forma general sería:

SI Hecho1 Y/O Hecho2 Y/O… HechoN ENTONCES Hecho1 Y/O … HechoN

Los hechos son afirmaciones que sirven para representar conceptos, datos, objetos, etc. Y el conjunto de hechos que describen el problema es la base de hechos.

Ejemplo de hechos:
Juan es un estudiante
Juan tiene 8 años
el perro es blanco
a María le gusta el cine
Pedro prefiere la película
la edad de Luis es de 25 años
Pedro tiene un salario de 200 pesos

Una regla es una combinación de hechos que permite representar conocimientos y sacar inferencias de los mismos.

Ejemplo de reglas:

R1: SI Juan es esgudiante Y Juan tiene 8 años Entonces Juan estudia en la primaria .

R2: SI el perro es blanco Y el perro se llama Dinky ENTONCES el perro es de Juan.

R3: SI a Maria le gusta la pelicula Y Juan prefiere la pelota ENTONCES hacen falta e televisiores

Observe como partiendo de hechos conocidos que describen algún conocimiento se pueden inferir nuevos hechos (nuevos conocimientos), por otra parte la regla #2 (R2), no tiene porque ser totalmente cierta, existe la posibilidad de que el perro sea de Juan, quizás se puede afirmar, si fuéramos a cuantificar esa posibilidad, que el perro pertenece a Juan con una certeza de un 80%, y por último la regla #3 (R3) es dependiente del contexto, ya que aquí se supone que ambos viven juntos y que los programas de TV coinciden.

La Base de Conocimientos (BC).
Son el conjunto de reglas que permiten representar los conocimientos del dominio de experto donde cada regla aisladamente tiene significado propio. Normalmente los conocimientos son de tipo declarativo por lo cual la BC casi siempre es una descripción de los conocimientos del experto, por lo tanto requiere de algún mecanismo que obtenga las inferencias adecuadas para resolver el problema, alguien que seleccione las reglas y las vaya ejecutando, ese alguien es el motor de inferencias.

El Motor de Inferencias (MI) es un programa de control cuya función es seleccionar las reglas posibles a satisfacer el problema, para ello se vale de ciertas estrategias de control sistemáticas o de estrategias heurísticas.

Estrategias de control sistemático:
Encadenamiento hacia adelante o hacia atrás.
Búsqueda en profundidad o a lo ancho.
Régimen de control irrevocable o por tentativa.

Estas estrategias son de forma sistemática las cuales deben llevar a la solución del problema. Podemos decir que el control sistemático es un programa de control hecho de forma “algorítmica” que aplican una heurística de propósito general cuya función es una exploración exhaustiva y metódica de la base de conocimientos.

Estos mecanismos de control son muy generales y a veces resultan ineficientes ya que siguen una secuencia de búsqueda demasiado rígida, para resolver esto se idearon las estrategias de control heurísticas.

Las estrategias de control heurísticas son programas de control que utilizan una heurística más específica y su función es una selección más restringida orientada por las necesidades del problema. Estas estrategias actúan sobre el control sistemático y en ciertos casos toma el control y dirige la búsqueda hacia ciertos criterios rompiendo así el control sistemático, una vez logrado su objetivo le devuelve el control nuevamente al sistemático.

Estrategias de control heurísticas:
Orden de las reglas.
Mayor credibilidad en las reglas.
Menor número de cláusulas no instanciadas.
Mayor número de conclusiones en las reglas.

Podemos decir que un sistema experto, es un sistema informático que utiliza técnicas apropiadas para la representación de conocimientos y la manipulación de este, de forma tal que exhiba el comportamiento de un avezado especialista en un determinado dominio del saber.

Lectura recomendada

libro-portada-ia_El libro es una propuesta sobre el futuro del hombre y como será su relación con una tecnología que cada vez se hace más independiente y más ajena al destino del hombre como ser humano y es un esfuerzo por responder a las preguntas sobre cuál será nuestro futuro ante el acelerado desarrollo de las máquinas. Y que opciones tenemos.

Disponible en Amazon:
Inteligencia Artificial, el futuro del hombre

Filed under Sistemas Expertos by on . 47 Comments#